Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East-Central China and Their Tectonic Implications
Hongyi Li
Xiaodong Song
Qingtian Lü
Xiaoyu Yang
Yangfan Deng
Longbin Ouyang
Jiapeng Li
Xinfu Li
Guoming Jiang
Yangfan Deng
Deng Yangfan
ORCID: 0000-0003-3994-9865
Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography
10.1016/j.epsl.2016.10.051
Joint Inversion of Surface Wave Dispersions and Receiver Functions with P Velocity Constraints: Application to Southeastern Tibet
10.1002/2017JB014135
Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East‐Central China and Their Tectonic Implications
10.1002/2017JB014992
Joint Inversion for Lithospheric Structures: Implications for the Growth and Deformation in Northeastern Tibetan Plateau
10.1029/2018GL077486
Lateral variation in seismic velocities and rheology beneath the Qinling-Dabie orogen
10.1007/s11430-016-0101-6
Lithospheric strength variations in Mainland China: Tectonic implications
10.1002/2016TC004272
Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment
10.1016/j.tecto.2016.01.039
Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersion
10.1093/gji/ggv321
Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment
10.1016/j.epsl.2015.09.048
3-D density structure under South China constrained by seismic velocity and gravity data
10.1016/j.tecto.2013.07.032
Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet
10.1016/j.tecto.2013.11.010
Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton
10.1016/j.earscirev.2013.12.005
Geophysical transect across the North China Craton: A perspective on the interaction between Tibetan eastward escape and Pacific westward flow
10.1016/j.gr.2013.07.004
Mantle origin of the Emeishan large igneous province (South China) from the analysis of residual gravity anomalies
10.1016/j.lithos.2014.02.008
Moho depth, seismicity and seismogenic structure in China mainland
10.1016/j.tecto.2013.11.008
Multitaper spectral method to estimate the elastic thickness of South China: Implications for intracontinental deformation
http://dx.doi.org/10.1016/j.gsf.2013.05.002
The gravity and isostatic Moho in North China Craton and their implications to seismicity
10.1007/s11589-013-0019-y
Transition from continental collision to tectonic escape? A geophysical perspective on lateral expansion of the northern Tibetan Plateau
10.1186/1880-5981-66-10
Geophysical constraints on mesozoic disruption of North China Craton by underplating-triggered lower-crust flow of the Archaean lithosphere
10.1111/ter.12032
Geophysical evidence on segmentation of the Tancheng-Lujiang fault and its implications on the lithosphere evolution in East China
10.1016/j.jseaes.2012.11.006
Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles
10.1016/j.tecto.2012.11.024
Seismic structure and rheology of the crust under mainland China
10.1016/j.gr.2012.07.010
Lateral variation of the strength of lithosphere across the eastern North China Craton: New constraints on lithospheric disruption
10.1016/j.gr.2012.03.006
An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings
10.1016/j.jseaes.2010.03.010
Crustal composition model across the Bangong–Nujiang suture belt derived from INDEPTH III velocity data
10.1088/1742-2132/8/4/007
Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications
10.3969/j.issn.0001-5733.2011.10.013
Lithospheric Alteration, Intraplate Crustal Deformation, and Topography in Eastern China
10.1029/2018TC005079
Permian plume beneath Tarim from receiver functions
10.5194/se-9-1179-2018
Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger
10.1016/j.tecto.2018.11.007
Reply to comment by Qi and Wang on “Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger”
10.1016/j.tecto.2019.06.026
Lithospheric structure in the Cathaysia block (South China) and its implication for the Late Mesozoic magmatism
https://doi.org/10.1016/j.pepi.2019.04.003
Permian plume beneath Tarim from receiver functions
10.5194/se-2018-41
Response to reviewer 1
10.5194/se-2018-41-AC1
Response to reviewer 2
10.5194/se-2018-41-AC2
Response to editor comment 1
10.5194/se-2018-41-AC3
Response to editor comment 2
10.5194/se-2018-41-AC4
Response to editor comment 3
10.5194/se-2018-41-AC5
Systematic search for repeating earthquakes along the Haiyuan fault system in Northeastern Tibet
10.1002/essoar.10502283.1
Sharpness of the 410-km discontinuity from the P410s and P2p410s seismic phases
10.1093/gji/ggz507
Systematic Search for Repeating Earthquakes Along the Haiyuan Fault System in Northeastern Tibet
10.1029/2020JB019583
New Insights Into the Heterogeneity of the Lithosphere‐Asthenosphere System Beneath South China From Teleseismic Body‐Wave Attenuation
10.1029/2020GL091654
Xiaodong Song
Song Xiaodong
ORCID: 0000-0002-5932-6916
Predicting a Global Perovskite and Post-Perovskite Phase Boundary
10.1029/174GM12
Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in Southeast Tibetan Plateau
10.6038/cjg20160908
Surface wave tomography of China from ambient seismic noise correlation
10.1029/2008GC001981
Anisotropy of the earth's inner core
10.1029/97RG01285
Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data
10.1016/j.tecto.2012.08.024
Lithospheric Structures of the Main Basins in Mainland China and Its Tectonic Implications,中国大陆大型盆地的岩石圈结构及构造意义
10.3799/dqkx.2018.314
Shale gas potential of the Lower Permian Gufeng Formation in the western area of the Lower Yangtze Platform, China
10.1016/j.marpetgeo.2015.05.031
Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation
10.1073/pnas.0901164106
Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone,面波频散与接收函数联合反演南北地震带北段壳幔速度结构
10.6038/cjg2018L0443
56 The Earth's core
10.1016/S0074-6142(02)80263-7
Insights into mantle structure and flow beneath Alaska based on a decade of observations of shear wave splitting
10.1002/2014JB011359
Joint inversion for crustal and Pn velocities and Moho depth in Eastern Margin of the Tibetan Plateau
10.1016/j.tecto.2009.11.022
A P wave velocity model of Earth's core
10.1029/94JB03135
Inner core rotation from event-pair analysis
10.1016/j.epsl.2007.06.034
Evidence for inner core super-rotation from time-dependent differential PKP traveltimes observed at Beijing seismic network
10.1046/j.1365-246X.2003.01852.x
Erratum: "Tomographic inversion of Pn travel times in China" (Journal of Geophysical Research (2004) vol. 10 (B11304) 10.1029/2003JB002789)
10.1029/2005JB003615
Deep structure of major basins in Western China and implications for basin formation and evolution
10.13745/j.esf.2015.01.011
Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications
10.1016/j.epsl.2013.03.015
Time dependence of PKP(BC)-PKP(DF) times: Could this be an artifact of systematic earthquake mislocations?
10.1016/S0031-9201(00)00195-3
Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East-Central China and Their Tectonic Implications
10.1002/2017JB014992
Crustal and Uppermost Mantle Structure Across the Tibet-Qinling Transition Zone in NE Tibet: Implications for Material Extrusion Beneath the Tibetan Plateau
10.1002/2017GL075141
Seismic evidence for an inner core transition zone
10.1126/science.282.5390.924
Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data
10.1007/s11589-013-0010-7
Topography of Earth's inner core boundary from high-quality waveform doublets
10.1111/j.1365-246X.2008.03909.x
Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions
10.1016/j.epsl.2015.01.020
Examination of systematic mislocation of South Sandwich Islands earthquakes using station pairs: Implications for inner core rotation
10.1029/2005JB004175
anisotropy of Earth's inner core
10.1029/93GL02812
PKP differential travel times: Implications for 3-D lower mantle structure
10.1029/97GL01761
Inner core transition zone and anomalous PKP(DF) waveforms from polar paths
10.1029/2001GL013822
Support for equatorial anisotropy of Earth's inner-inner core from seismic interferometry at low latitudes
10.1016/j.pepi.2017.03.004
First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves
10.1016/j.tecto.2012.03.030
Comment on "The existence of an inner core super-rotation questioned by teleseismic doublets" by Georges Poupinet, Annie Souriau, and Olivier Coutant
10.1016/S0031-9201(01)00182-0
Tomographic inversion for three-dimensional anisotropy of Earth's inner core
10.1016/j.pepi.2008.02.011
Geophysics: Inner core differential motion confirmed by earthquake waveform doublets
10.1126/science.1113193
Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion
10.1002/2014GL059269
Preface to the special issue on ambient noise seismology
10.1007/s11589-010-0737-3
Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny
10.1016/j.epsl.2014.02.026
Differential rotation of the earth’s inner core
10.1007/978-90-481-8702-7_43
Two-dimensional/three-dimensional waveform modeling of subducting slab and transition zone beneath Northeast Asia
10.1002/2014JB011058
High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography
10.1016/j.epsl.2015.02.024
Seismological evidence for differential rotation of the earth's inner core
10.1038/382221a0
Depth dependence of anisotropy of Earth's inner core
10.1029/95JB00244
Joint Inversion for Lithospheric Structures: Implications for the Growth and Deformation in Northeastern Tibetan Plateau
10.1029/2018GL077486
Joint Inversion of Surface Wave Dispersions and Receiver Functions with P Velocity Constraints: Application to Southeastern Tibet
10.1002/2017JB014135
Pn tomography of South China Sea, Taiwan Island, Philippine archipelago, and adjacent regions
10.1002/2016JB013787
Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America
10.1073/pnas.0609143103
Tomographic inversion of Pn travel times in China
10.1029/2003JB002789
Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography
10.1007/s11589-010-0744-4
A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography
10.1029/2006GL027926
Extraction of triplicated PKP phases from noise correlations
10.1093/gji/ggw015
Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography
10.1111/j.1365-246X.2011.05205.x
Detection of motion and heterogeneity in Earth's liquid outer core
10.1029/2008GL034895
Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda
10.1038/ngeo2354
The inner inner core of the Earth: Texturing of iron crystals from three-dimensional seismic anisotropy
10.1016/j.epsl.2008.01.049
Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet
10.1073/pnas.1717258115
Impacts of climate warming on Alpine glacier tourism and adaptive measures: A case study of Baishui Glacier No. 1 in Yulong Snow Mountain, Southwestern China
10.1007/s12583-010-0015-2
Effect of velocity structure in D″ on PKP phases
10.1029/92GL02614
PKP travel times at near antipodal distances: Implications for inner core anisotropy and lowermost mantle structure
10.1016/S0012-821X(02)00580-0
Localized temporal variation of Earth’s inner-core boundary from high-quality waveform doublets
10.1007/s11589-015-0125-0
Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection
10.1002/2014GL061115